143 research outputs found

    Black hole solutions in the warped DGP braneworld

    Full text link
    We study the static, analytical solution of black holes in the warped DGP braneworld scenario. We show that the linearized field equations and matching conditions lead to solutions that are not compatible with Schwarzschild-(A)dS(4)_{(4)} solutions on the brane. This incompatibility is similar to vDVZ discontinuity in massive gravity theory. Following the standard procedure to remove this discontinuity, which firstly was proposed by Vainshtein, we keep some appropriate nonlinear terms in the field equations. This strategy has its origin in the fact that the spatial extrinsic curvature of the brane plays a crucial role in the nonlinear nature of the solutions and also in recovering the well-measured predictions of General Relativity (GR) at small scales. Using this feature, we obtained an interesting black string solution in the bulk when it is compatible with 4D GR solutions on the brane.Comment: 15 pages, no figure

    Nonminimal Scalar-Tensor Theories and Quantum Gravity

    Get PDF
    Recentely, it is shown that the quantum effects of matter determine the conformal degree of freedom of the space-time metric. This was done in the framework of a scalar-tensor theory with one scalar field. A point with that theory is that the form of quantum potential is preassumed. Here we present a scalar-tensor theory with two scalar fields, and no assumption on the form of quantum potential. It is shown that using the equations of motion one gets the correct form of quantum potential plus some corrections.Comment: 15 page

    Arrow of time in dissipationless cosmology

    Get PDF
    © 2015 IOP Publishing Ltd. It is generally believed that a cosmological arrow of time must be associated with entropy production. Indeed, in his seminal work on cyclic cosmology, Tolman introduced a viscous fluid in order to make successive expansion/contraction cycles larger than previous ones, thereby generating an arrow of time. However, as we demonstrate in this letter, the production of entropy is not the only means by which a cosmological arrow of time may emerge. Remarkably, systems which are dissipationless may nevertheless demonstrate a preferred direction of time provided they possess attractors. An example of a system with well defined attractors is scalar-field driven cosmology. In this case, for a wide class of potentials (especially those responsible for inflation), the attractor equation of state during expansion can have the form ρ ≃ -ρ, and during contraction ρ ≃ ρ. If the resulting cosmology is cyclic, then the presence of cosmological hysteresis, φ pdV ≠ 0 during successive cycles, causes an arrow of time to emerge in a system which is formally dissipationless. An important analogy is drawn between the arrow of time in cyclic cosmology and an arrow of time in an N-body system of gravitationally interacting particles. We find that, like the N-body system, a cyclic Universe can evolve from a single past into two futures with oppositely directed arrows of time

    Induced cosmological constant and other features of asymmetric brane embedding

    Full text link
    We investigate the cosmological properties of an "induced gravity" brane scenario in the absence of mirror symmetry with respect to the brane. We find that brane evolution can proceed along one of four distinct branches. By contrast, when mirror symmetry is imposed, only two branches exist, one of which represents the self-accelerating brane, while the other is the so-called normal branch. This model incorporates many of the well-known possibilities of brane cosmology including phantom acceleration (w < -1), self-acceleration, transient acceleration, quiescent singularities, and cosmic mimicry. Significantly, the absence of mirror symmetry also provides an interesting way of inducing a sufficiently small cosmological constant on the brane. A small (positive) Lambda-term in this case is induced by a small asymmetry in the values of bulk fundamental constants on the two sides of the brane.Comment: 17 pages, 4 figures. New results and two figures discussing transient acceleration are included. Version accepted for publication in JCA

    Cosmological zoo -- accelerating models with dark energy

    Get PDF
    ecent observations of type Ia supernovae indicate that the Universe is in an accelerating phase of expansion. The fundamental quest in theoretical cosmology is to identify the origin of this phenomenon. In principle there are two possibilities: 1) the presence of matter which violates the strong energy condition (a substantial form of dark energy), 2) modified Friedmann equations (Cardassian models -- a non-substantial form of dark matter). We classify all these models in terms of 2-dimensional dynamical systems of the Newtonian type. We search for generic properties of the models. It is achieved with the help of Peixoto's theorem for dynamical system on the Poincar{\'e} sphere. We find that the notion of structural stability can be useful to distinguish the generic cases of evolutional paths with acceleration. We find that, while the Λ\LambdaCDM models and phantom models are typical accelerating models, the cosmological models with bouncing phase are non-generic in the space of all planar dynamical systems. We derive the universal shape of potential function which gives rise to presently accelerating models. Our results show explicitly the advantages of using a potential function (instead of the equation of state) to probe the origin of the present acceleration. We argue that simplicity and genericity are the best guide in understanding our Universe and its acceleration.Comment: RevTeX4, 23 pages, 10 figure

    On generation of metric perturbations during preheating

    Get PDF
    We consider the generation of the scalar mode of the metric perturbations during preheating stage in a two field model with the potential V(ϕ,χ)=m2ϕ22+g2ϕ2χ22V(\phi, \chi)= {m^{2}\phi^{2}\over 2}+{g^{2}\phi^{2}\chi^{2}\over 2}. We discuss two possible sources of such perturbations: a) due to the coupling between the perturbation of the matter field Ύχ\delta \chi and the background part of the matter field χ0(t)\chi_{0}(t), b) due to non-linear fluctuations in a condensate of ``particles'' of the field χ\chi. Both types of the metric perturbations are assumed to be small, and estimated using the linear theory of the metric perturbations. We estimate analytically the upper limit of the amplitude of the metric perturbations for all scales in the limit of so-called broad resonance, and show that the large scale metric perturbations are very small, and taking them into account does not influence the standard picture of the production of the metric perturbations in inflationary scenario.Comment: This version is to be published in PRD, new references added and typos correcte

    Reheating and thermalization in a simple scalar model

    Get PDF
    We consider a simple model for the Universe reheating, which consists of a single self--interacting scalar field in Minkowskian space--time. Making use of the existence of an additional small parameter proportional to the amplitude of the initial spatially homogeneous field oscillations, we show that the behavior of the field can be found reliably. We describe the evolution of the system from the homogeneous oscillations to the moment when thermalization is completed. We compare our results with the Hartree--Fock approximation and argue that some properties found for this model may be the common features of realistic theories.Comment: Some changes in Introduction and Discussion, comparison with the Hartree--Fock results added. 37 pages, 2 postscript figures attache

    Chaotic behavior in a Z_2 x Z_2 field theory

    Full text link
    We investigate the presence of chaos in a system of two real scalar fields with discrete Z_2 x Z_2 symmetry. The potential that identify the system is defined with a real parameter r and presents distinct features for r>0 and for r<0. For static field configurations, the system supports two topological sectors for r>0, and only one for r<0. Under the assumption of spatially homogeneous fields, the system exhibts chaotic behavior almost everywhere in parameter space. In particular a more complex dynamics appears for r>0; in this case chaos can decrease for increasing energy, a fact that is absent for r<0.Comment: Revtex, 13 pages, no figures. Version with figures in Int. J. Mod. Phys. A14 (1999) 496

    Gravitational instability on the brane: the role of boundary conditions

    Get PDF
    An outstanding issue in braneworld theory concerns the setting up of proper boundary conditions for the brane-bulk system. Boundary conditions (BC's) employing regulatory branes or demanding that the bulk metric be nonsingular have yet to be implemented in full generality. In this paper, we take a different route and specify boundary conditions directly on the brane thereby arriving at a local and closed system of equations (on the brane). We consider a one-parameter family of boundary conditions involving the anisotropic stress of the projection of the bulk Weyl tensor on the brane and derive an exact system of equations describing scalar cosmological perturbations on a generic braneworld with induced gravity. Depending upon our choice of boundary conditions, perturbations on the brane either grow moderately (region of stability) or rapidly (instability). In the instability region, the evolution of perturbations usually depends upon the scale: small scale perturbations grow much more rapidly than those on larger scales. This instability is caused by a peculiar gravitational interaction between dark radiation and matter on the brane. Generalizing the boundary conditions obtained by Koyama and Maartens, we find for the Dvali-Gabadadze-Porrati model an instability, which leads to a dramatic scale-dependence of the evolution of density perturbations in matter and dark radiation. A different set of BC's, however, leads to a more moderate and scale-independent growth of perturbations. For the mimicry braneworld, which expands like LCDM, this class of BC's can lead to an earlier epoch of structure formation.Comment: 35 pages, 9 figures, an appendix and references added, version to be published in Classical and Quantum Gravit

    Inflation on a Warped Dvali-Gabadadze-Porrati Brane

    Full text link
    We discuss an inflation model, in which the inflation is driven by a single scalar field with exponential potential on a warped DGP brane. In contrast to the power law inflation in standard model, we find that the inflationary phase can exit spontaneously without any mechanism. The running of the index of scalar perturbation spectrum can take an enough large value to match the observation data, while other parameters are in a reasonable region.Comment: Revtex, v3: 15 pages including 6 eps figures, some changes made and references added, to appear in JCA
    • 

    corecore